Automatic Segmentation of Abdominal MRI Using Selective Sampling and Random Walker
نویسندگان
چکیده
MRI segmentation is a challenging task due to low anatomical contrast and large inter-patient variation. We propose a featuredriven automatic segmentation framework, combining voxel-wise classification with a Random-Walker (RW) based spatial regularization. Typically, such steps are treated independently, i.e. classification outcome is maximized without taking into account the regularization to follow. Herein we present a method for selective sampling of training patches, in view of the posterior spatial regularization. This aims to concentrate training samples near desired anatomical boundaries, around which the gain from a subsequent RW regularization will potentially be minimal. This trades off a lower classification accuracy for a higher joint segmentation performance. We compare our proposed sampling strategy to conventional uniform sampling on 20 full-body MR T1 scans from the VISCERAL dataset, both with RW and Markov Random Fields regularizations, showing Dice improvements of up to 12× with the proposed approach.
منابع مشابه
Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملA Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network
Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...
متن کاملNeural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملAutomatic segmentation of glioma tumors from BraTS 2018 challenge dataset using a 2D U-Net network
Background: Glioma is the most common primary brain tumor, and early detection of tumors is important in the treatment planning for the patient. The precise segmentation of the tumor and intratumoral areas on the MRI by a radiologist is the first step in the diagnosis, which, in addition to the consuming time, can also receive different diagnoses from different physicians. The aim of this study...
متن کاملCombining Outlier Detection with Random Walker for Automatic Brain Tumor Segmentation
The diagnosis of brain neoplasms has been facilitated by the emerging of high-quality imaging techniques, such as Magnetic Resonance Imaging (MRI), while the combination of several sequences from conventional and advanced protocols has increased the diagnostic information. Treatment planning and therapy follow-up require the detection of neoplastic and edematous tissue boundaries, a very time c...
متن کامل